Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Emerg Microbes Infect ; 11(1): 368-383, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1604258

ABSTRACT

Older individuals are at higher risk of SARS-CoV-2 infection and severe outcomes, but the underlying mechanisms are incompletely understood. In addition, how age modulates SARS-CoV-2 re-infection and vaccine breakthrough infections remain largely unexplored. Here, we investigated age-associated SARS-CoV-2 pathogenesis, immune responses, and the occurrence of re-infection and vaccine breakthrough infection utilizing a wild-type C57BL/6N mouse model. We demonstrated that interferon and adaptive antibody response upon SARS-CoV-2 challenge are significantly impaired in aged mice compared to young mice, which results in more effective virus replications and severe disease manifestations in the respiratory tract. Aged mice also showed increased susceptibility to re-infection due to insufficient immune protection acquired during the primary infection. Importantly, two-dose COVID-19 mRNA vaccination conferred limited adaptive immune response among the aged mice, making them susceptible to SARS-CoV-2 infection. Collectively, our findings call for tailored and optimized treatments and prevention strategies against SARS-CoV-2 among older individuals.


Subject(s)
Age Factors , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Aging/immunology , Animals , Antibodies, Viral/immunology , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Disease Models, Animal , Disease Susceptibility , Female , Humans , Immunity , Mice , Mice, Inbred C57BL , Respiratory System/immunology , Respiratory System/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Vaccination , Virus Replication
2.
Nat Commun ; 12(1): 1517, 2021 03 09.
Article in English | MEDLINE | ID: covidwho-1125914

ABSTRACT

Up to date, effective antivirals have not been widely available for treating COVID-19. In this study, we identify a dual-functional cross-linking peptide 8P9R which can inhibit the two entry pathways (endocytic pathway and TMPRSS2-mediated surface pathway) of SARS-CoV-2 in cells. The endosomal acidification inhibitors (8P9R and chloroquine) can synergistically enhance the activity of arbidol, a spike-ACE2 fusion inhibitor, against SARS-CoV-2 and SARS-CoV in cells. In vivo studies indicate that 8P9R or the combination of repurposed drugs (umifenovir also known as arbidol, chloroquine and camostat which is a TMPRSS2 inhibitor), simultaneously interfering with the two entry pathways of coronaviruses, can significantly suppress SARS-CoV-2 replication in hamsters and SARS-CoV in mice. Here, we use drug combination (arbidol, chloroquine, and camostat) and a dual-functional 8P9R to demonstrate that blocking the two entry pathways of coronavirus can be a promising and achievable approach for inhibiting SARS-CoV-2 replication in vivo. Cocktail therapy of these drug combinations should be considered in treatment trials for COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Repositioning , Peptides/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Animals , COVID-19/virology , Chlorocebus aethiops , Chloroquine/pharmacology , Drug Discovery , Female , HEK293 Cells , Humans , Indoles/pharmacology , Mice , Mice, Inbred BALB C , Serine Endopeptidases/metabolism , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL